Dietary Calcium and Dairy Modulation of Oxidative Stress and Mortality in aP2-Agouti and Wild-type Mice

نویسندگان

  • Antje Bruckbauer
  • Michael B. Zemel
چکیده

Oxidative and inflammatory stress have been implicated as major contributors to the aging process. Dietary Ca reduced both factors in short-term interventions, while milk exerted a greater effect than supplemental Ca. In this work, we examined the effects of life-long supplemental and dairy calcium on lifespan and life-span related biomarkers in aP2-agouti transgenic (model of diet-induced obesity) and wild-type mice fed obesigenic diets until their death. These data demonstrate that dairy Ca exerts sustained effects resulting in attenuated adiposity, protection against age-related muscle loss and reduction of oxidative and inflammatory stress in both mouse strains. Although these effects did not alter maximum lifespan, they did suppress early mortality in wild-type mice, but not in aP2-agouti transgenic mice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calcium and 1,25-dihydroxyvitamin D3 regulation of adipokine expression.

OBJECTIVE Obesity is associated with elevated oxidative stress and low-grade systemic inflammation. We have demonstrated recently that 1alpha,25-(OH)(2)-D(3) promotes reactive oxygen species production in cultured adipocytes, whereas suppression of 1alpha,25-(OH)(2)-D(3) by increasing dietary calcium down-regulates diet-induced oxidative stress in aP2-agouti transgenic mice. However, whether th...

متن کامل

A combination of probiotics and whey proteins enhances anti-obesity effects of calcium and dairy products during nutritional energy restriction in aP2-agouti transgenic mice.

Lactobacillus rhamnosus GG, Lactobacillus paracasei TMC0409, Streptococcus thermophilus TMC1543 and whey proteins were used to prepare fermented milk. For the experiment aP2- agouti transgenic mice were pre-treated with a high-sucrose/high-fat diet for 6 weeks to induce obesity. The obese mice were fed a diet containing 1·2% Ca and either non-fat dried milk (NFDM) or probiotic-fermented milk (P...

متن کامل

Effects of dietary calcium on adipocyte lipid metabolism and body weight regulation in energy-restricted aP2-agouti transgenic mice.

We have demonstrated previously a regulatory role for intracellular Ca2+ ([Ca2+]i) in adipocyte lipogenesis and lipolysis and have recently reported that 1,25-(OH)2-D increases adipocyte [Ca2+]i, which causes increased lipogenesis and decreased lipolysis. We have now tested the hypothesis that suppressing 1,25-(OH)2-D by increasing dietary calcium will suppress adipocyte [Ca2+]i, thereby facili...

متن کامل

Calcium and dairy products inhibit weight and fat regain during ad libitum consumption following energy restriction in Ap2-agouti transgenic mice.

We demonstrated previously that dietary calcium suppression of calcitriol reduces adipocyte Ca(2+), suppresses lipogenesis, and increases lipid utilization during energy restriction. Notably, dairy calcium sources exert markedly greater effects. To determine the effects of dietary calcium and dairy products on energy partitioning during subsequent refeeding, we induced obesity in aP2-agouti tra...

متن کامل

Assessment of oxidative stress parameters of brain-derived neurotrophic factor heterozygous mice in acute stress model

Objective(s): Exposing to stress may be associated with increased production of reactive oxygen species (ROS). Therefore, high level of oxidative stress may eventually give rise to accumulation of oxidative damage and development of numerous neurodegenerative diseases. It has been presented that brain-derived neurotrophic factor (BDNF) supports neurons against various neurodegenerative conditio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2009